Identifying amyotrophic lateral sclerosis through interactions with an internet search engine

Author:

Yom‐Tov Elad1ORCID,Navar Indu2,Fraenkel Ernest3ORCID,Berry James D.4ORCID

Affiliation:

1. Microsoft Research Herzeliya Israel

2. EverythingALS Seattle Washington USA

3. Department of Biological Engineering Massachusetts Institute of Technology Cambridge Massachusetts USA

4. Department of Neurology, Sean M. Healey and AMG Center for ALS Massachusetts General Hospital Boston Massachusetts USA

Abstract

AbstractIntroduction/AimsAmyotrophic lateral sclerosis (ALS), a motor neuron disease, remains a clinical diagnosis with an average time from onset of symptoms to diagnosis of about 1 year. Herein we examine the possibility that interactions with an internet search engine can identify people with ALS.MethodsWe identified 285 anonymous Bing users whose queries indicated that they had been diagnosed with ALS and matched them to: (1) 3276 control users; and (2) 1814 users whose searches indicated they had ALS disease mimics. We tested whether the ALS group could be distinguished from controls and disease mimics based on search engine query data. Finally, we conducted a prospective validation from participants who provided access to their Bing search data.ResultsThe model distinguished between the ALS group and controls with an area under the curve (AUC) of 0.81. Model scores for the ALS group differed from the disease mimics group (rank sum test, p < .05 with Bonferroni correction). Mild cognitive impairment could not be distinguished from ALS (p > .05). In the prospective analysis, the model reached an AUC of 0.74.DiscussionOur results suggest that interactions with search engines should be further studied to understand the potential to act as a tool to assist in screening for ALS and to reduce diagnostic delay.

Publisher

Wiley

Subject

Physiology (medical),Cellular and Molecular Neuroscience,Neurology (clinical),Physiology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3