Seismic performance loss evaluation of reinforced concrete frame structure based on updatable damage model

Author:

Li Zuohua12,Lu Jianfeng12ORCID,Teng Jun12

Affiliation:

1. School of Civil and Environmental Engineering Harbin Institute of Technology (Shenzhen) Shenzhen China

2. Guangdong Provincial Key Laboratory of Intelligent and Resilient Structures for Civil Engineering Shenzhen China

Abstract

AbstractAs structural seismic damage develops, the internal force transfer and damage weight relationship of component are constantly changing, and the fixed weighted coefficient is adopted by the traditional weighted method, which cannot reflect the changes in the structural damage state. The structure is a network formed by connecting a large number of components, and the network state undergoes complex changes with the development of component damage. In this paper, a novel method for component damage transfer to structural seismic performance loss is proposed using network shortest paths. First, a directed weighted complex network based on force transfer direction and component stiffness is constructed for reinforced concrete (RC) frame structures. Then, the component damage is calculated by the degradation of its stiffness and is used to update the weight distribution of the damage network. Finally, the structural performance loss is evaluated by the degradation of damage network efficiency. Results show that the proposed method with an updated component weight relationship is able to reflect the true loss of structural performance according to the finite element dynamic elastic‐plastic analysis of RC frame structures. For the structural performance loss degree (none, slight, moderate, severe, complete), the proposed method and the weighted method both exhibit high accuracy (number correctly classified/total number of samples) when structural performance loss is none, severe, or complete loss. The accuracy of the proposed method is significantly higher than that of the weighted method when structural performance loss is slight and moderate loss, with 58.1% and 84.2% improvement, respectively. For structural typical damage modes (global, local, and weak layer damage mode), the proposed method and the weighted method both exhibit high accuracy when structures exhibit global damage mode. The accuracy of the proposed method is significantly higher than that of the weighted method when structures exhibit local and weak layer damage mode. The accuracy of the proposed method is stable at 95.2%, while the accuracy of the weighted method is 76.2% and 70.2%, respectively. Overall, the weighted method exhibits high accuracy when structural performance loss is less than slight loss or greater than moderate loss, while the proposed method exhibits high accuracy throughout the entire process of structural performance loss, especially in moderate loss.

Funder

Natural Science Foundation of Guangdong Province

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3