Piezoelectric stimulation enhances bone regeneration in alveolar bone defects through metabolic reprogramming of macrophages

Author:

Sui Baiyan1,Ding Tingting1,Wan Xingyi23,Chen Yuxiao1,Zhang Xiaodi4,Cui Yuanbo5,Pan Jie6,Li Linlin23ORCID,Liu Xin1ORCID

Affiliation:

1. Department of Dental Materials Shanghai Biomaterials Research and Testing Center Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology Shanghai China

2. Beijing Institute of Nanoenergy and Nanosystems Chinese Academy for Sciences Beijing China

3. School of Nanoscience and Engineering University of Chinese Academy of Sciences Beijing China

4. Institute for Cell Engineering Department of Neurology Johns Hopkins University School of Medicine Baltimore Maryland USA

5. Leavey School of Business Santa Clara University Santa Clara California USA

6. Department of Orthodontics, Shanghai Stomatological Hospital and School of Stomatology Fudan University Shanghai China

Abstract

AbstractImmunomodulation has emerged as a promising strategy for promoting bone regeneration. However, designing osteoimmunomodulatory biomaterial that can respond to mechanical stress in the unique microenvironment of alveolar bone under continuous occlusal stress remains a significant challenge. Herein, a wireless piezoelectric stimulation system, namely, piezoelectric hydrogel incorporating BaTiO3 nanoparticles (BTO NPs), is successfully developed to generate piezoelectric potentials for modulating macrophage reprogramming. The piezoelectric stimulation reprograms macrophages towards the M2 phenotype, which subsequently induces osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs). RNA sequencing analysis reveals that piezoelectricity‐modulated macrophage M2 polarization is closely associated with metabolic reprogramming, including increased amino acid biosynthesis and fatty acid oxidation. The composite hydrogel with excellent biocompatibility exhibits immunomodulatory and osteoinductive activities. In a rat model of alveolar bone defects, the piezoelectric hydrogel effectively promotes endogenous bone regeneration at the load‐bearing sites. The piezoelectric‐driven osteoimmunomodulation proposed in this study not only broadens understanding of the mechanism underlying piezoelectric biomaterials for tissue regeneration but also provides new insights into the design and development of next‐generation immunomodulatory biomaterials.

Funder

National Natural Science Foundation of China

Science and Technology Commission of Shanghai Municipality

Innovative Research Team of High-level Local University in Shanghai

Fundamental Research Funds for the Central Universities

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3