Self‐supported bimetallic array superstructures for high‐performance coupling electrosynthesis of formate and adipate

Author:

Liu Li12,He Yingchun12,Li Qing12,Cao Changsheng1,Huang Minghong3,Ma Dong‐Dong12,Wu Xin‐Tao142,Zhu Qi‐Long142ORCID

Affiliation:

1. State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou China

2. University of Chinese Academy of Sciences Beijing China

3. School of Civil and Environmental Engineering University of Technology Sydney Ultimo New South Wales Australia

4. Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China Fuzhou China

Abstract

AbstractThe coupling electrosynthesis involving CO2 upgrade conversion is of great significance for the sustainable development of the environment and energy but is challenging. Herein, we exquisitely constructed the self‐supported bimetallic array superstructures from the Cu(OH)2 array architecture precursor, which can enable high‐performance coupling electrosynthesis of formate and adipate at the anode and the cathode, respectively. Concretely, the faradaic efficiencies (FEs) of CO2‐to‐formate and cyclohexanone‐to‐adipate conversion simultaneously exceed 90% at both electrodes with excellent stabilities. Such high‐performance coupling electrosynthesis is highly correlated with the porous nanosheet array superstructure of CuBi alloy as the cathode and the nanosheet‐on‐nanowire array superstructure of CuNi hydroxide as the anode. Moreover, compared to the conventional electrolysis process, the cell voltage is substantially reduced while maintaining the electrocatalytic performance for coupling electrosynthesis in the two‐electrode electrolyzer with the maximal FEformate and FEadipate up to 94.2% and 93.1%, respectively. The experimental results further demonstrate that the bimetal composition modulates the local electronic structures, promoting the reactions toward the target products. Prospectively, our work proposes an instructive strategy for constructing adaptive self‐supported superstructures to achieve efficient coupling electrosynthesis.

Funder

National Natural Science Foundation of China

National Key Research and Development Program of China

Natural Science Foundation of Fujian Province

China Postdoctoral Science Foundation

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3