How can we apply decision‐making theories to wild animal behavior? Predictions arising from dual process theory and Bayesian decision theory

Author:

Teichroeb Julie A.12ORCID,Smeltzer Eve A.12,Mathur Virendra12,Anderson Karyn A.12,Fowler Erica J.12,Adams Frances V.12,Vasey Eric N.12,Tamara Kumpan Ludmila12ORCID,Stead Samantha M.12ORCID,Arseneau‐Robar T. Jean M.13

Affiliation:

1. Department of Anthropology University of Toronto Scarborough Toronto Ontario Canada

2. Department of Anthropology University of Toronto Toronto Ontario Canada

3. Department of Biology Concordia University Montréal Quebec Canada

Abstract

AbstractOur understanding of decision‐making processes and cognitive biases is ever increasing, thanks to an accumulation of testable models and a large body of research over the last several decades. The vast majority of this work has been done in humans and laboratory animals because these study subjects and situations allow for tightly controlled experiments. However, it raises questions about how this knowledge can be applied to wild animals in their complex environments. Here, we review two prominent decision‐making theories, dual process theory and Bayesian decision theory, to assess the similarities in these approaches and consider how they may apply to wild animals living in heterogenous environments within complicated social groupings. In particular, we wanted to assess when wild animals are likely to respond to a situation with a quick heuristic decision and when they are likely to spend more time and energy on the decision‐making process. Based on the literature and evidence from our multi‐destination routing experiments on primates, we find that individuals are likely to make quick, heuristic decisions when they encounter routine situations, or signals/cues that accurately predict a certain outcome, or easy problems that experience or evolutionary history has prepared them for. Conversely, effortful decision‐making is likely in novel or surprising situations, when signals and cues have unpredictable or uncertain relationships to an outcome, and when problems are computationally complex. Though if problems are overly complex, satisficing via heuristics is likely, to avoid costly mental effort. We present hypotheses for how animals with different socio‐ecologies may have to distribute their cognitive effort. Finally, we examine the conservation implications and potential cognitive overload for animals experiencing increasingly novel situations caused by current human‐induced rapid environmental change.

Funder

Natural Sciences and Engineering Research Council of Canada

Publisher

Wiley

Subject

Animal Science and Zoology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3