Unsupervised machine learning techniques applied to composite reliability assessment of power systems
Author:
Affiliation:
1. Department of Electrical Engineering Federal University of São João del‐Rei ‐ UFSJ São João del‐Rei Brazil
2. Department of Electrical Engineering Pontifical Catholic University of Rio de Janeiro ‐ PUC‐Rio Rio de Janeiro Brazil
Funder
Conselho Nacional de Desenvolvimento Científico e Tecnológico
Publisher
Hindawi Limited
Subject
Electrical and Electronic Engineering,Energy Engineering and Power Technology,Modeling and Simulation
Link
https://onlinelibrary.wiley.com/doi/pdf/10.1002/2050-7038.13109
Reference39 articles.
1. A Method for Transmission System Expansion Planning Considering Probabilistic Reliability Criteria
2. Reliability worth applied to transmission expansion planning based on ant colony system
3. Reliability worth applied to transmission expansion planning based on ant colony system
4. Enhancing the situational awareness of voltage security region via probabilistic reliability evaluation
5. Composite generation/transmission reliability evaluation
Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Artificial Intelligence for safety and reliability: A descriptive, bibliometric and interpretative review on machine learning;Journal of Loss Prevention in the Process Industries;2024-08
2. Artificial intelligence and machine learning in future energy systems (state-of-the-art, future development);Applications of Deep Machine Learning in Future Energy Systems;2024
3. A GPU-Based Model for Composite Power System Reliability Evaluation and Sensitivity Analysis;2023 IEEE Industry Applications Society Annual Meeting (IAS);2023-10-29
4. A Deep Neural Network Architecture for Composite Reliability Assessment;2023 IEEE Power & Energy Society General Meeting (PESGM);2023-07-16
5. K-Means and Alternative Clustering Methods in Modern Power Systems;IEEE Access;2023
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3