A data‐driven probabilistic power flow method based on convolutional neural networks
Author:
Affiliation:
1. Department of Electrical EngineeringTsinghua University Haidian, Beijing China
2. Guangdong Power Grid Power Dispatching Control CenterGuangdong Power Grid Co., Ltd. (GPGC) Guangzhou China
Funder
Key Research and Development Program of Guangdong Province, China
Scientific Research Project of Guangdong Province Power Grid Company
Publisher
Hindawi Limited
Subject
Electrical and Electronic Engineering,Energy Engineering and Power Technology,Modeling and Simulation
Link
https://onlinelibrary.wiley.com/doi/pdf/10.1002/2050-7038.12367
Reference40 articles.
1. Modern Power Systems Analysis
2. An Efficient Approach to Power System Uncertainty Analysis With High-Dimensional Dependencies
3. A critical review on probabilistic load flow studies in uncertainty constrained power systems with photovoltaic generation and a new approach
4. Stochastic power flow using cumulants and Von Mises functions
5. Point Estimate Schemes to Solve the Probabilistic Power Flow
Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Piecewise affine power flow model for distribution network optimization using CIM aided data-driven approach;Electric Power Systems Research;2024-12
2. Probabilistic power flow based on physics-guided graph neural networks;Electric Power Systems Research;2024-10
3. Chance constrained optimal power-water flow: An iterative algorithm assisted by deep neural networks;Electric Power Systems Research;2024-09
4. DC Voltage Prediction based on CNN with Physics Information Embedding for MVDC Distribution Systems;2024 IEEE 10th International Power Electronics and Motion Control Conference (IPEMC2024-ECCE Asia);2024-05-17
5. Congestion forecast framework based on probabilistic power flow and machine learning for smart distribution grids;International Journal of Electrical Power & Energy Systems;2024-02
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3