Impact of Aeolus wind lidar observations on the representation of the West African monsoon circulation in the ECMWF and DWD forecasting systems

Author:

Borne Maurus1ORCID,Knippertz Peter1ORCID,Weissmann Martin2,Martin Anne3ORCID,Rennie Michael4,Cress Alexander5

Affiliation:

1. Institute of Meteorology and Climate Research Karlsruhe Institute of Technology Karlsruhe Germany

2. Universität Wien Institut für Meteorologie und Geophysik Wien Austria

3. Ludwig‐Maximilians‐Universität Meteorologisches Institut München Germany

4. European Centre for Medium‐Range Weather Forecasts (ECMWF) Reading UK

5. Deutscher Wetterdienst (DWD) Offenbach am Main Germany

Abstract

AbstractAeolus is the first satellite mission to acquire vertical profiles of horizontal line‐of‐sight winds globally and thus fills an important gap in the Global Observing System, most notably in the Tropics. This study explores the impact of this dataset on analyses and forecasts from the European Centre for Medium‐Range Weather Forecasts (ECMWF) and Deutscher Wetterdienst (DWD), focusing specifically on the West African Monsoon (WAM) circulation during the boreal summers of 2019 and 2020. The WAM is notoriously challenging to forecast and is characterized by prominent and robust large‐scale circulation features such as the African Easterly Jet North (AEJ‐North) and Tropical Easterly Jet (TEJ). Assimilating Aeolus generally improves the prediction of zonal winds in both forecasting systems, especially for lead times above 24 h. These improvements are related to systematic differences in the representation of the two jets, with the AEJ‐North weakened at its southern flank in the western Sahel in the ECMWF analysis, while no obvious systematic differences are seen in the DWD analysis. In addition, the TEJ core is weakened in the ECMWF analysis and strengthened on its southern edge in the DWD analysis. The regions where the influence of Aeolus on the analysis is greatest correspond to the Intertropical Convergence Zone (ITCZ) region for ECMWF and generally the upper troposphere for DWD. In addition, we show the presence of an altitude‐ and orbit‐dependent bias in the Rayleigh‐clear channel, which causes the zonal winds to speed up and slow down diurnally. Applying a temperature‐dependent bias correction to this channel contributes to a more accurate representation of the diurnal cycle and improved prediction of the WAM winds. These improvements are encouraging for future investigations of the influence of Aeolus data on African Easterly Waves and associated Mesoscale Convective Systems.

Publisher

Wiley

Subject

Atmospheric Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3