Highly active and selective ZIF‐derived cobalt catalyst for methanol conversion to dimethyl carbonate

Author:

Wang Liping1ORCID,Meng Fanhui1ORCID,Ding Pengfei1ORCID,Nawaz Muhammad Asif2ORCID,Li Zhong1ORCID

Affiliation:

1. State Key Laboratory of Clean and Efficient Coal Utilization, College of Chemical Engineering and Technology Taiyuan University of Technology Taiyuan China

2. Department of Inorganic Chemistry and Material Sciences Institute of Seville (ICMSE) University of Seville‐CSIC Seville Spain

Abstract

The oxidative carbonylation of methanol to synthesize dimethyl carbonate (DMC) has been extensively studied over Cu‐based catalysts, but the activity and selectivity are not high. The Co catalysts exhibit high DMC selectivity, but the difficulty in recycling homogeneous Co catalyst and the low conversion of heterogeneous Co catalyst limit the application of Co catalysts. Here, the core–shell ZIFs materials were synthesized and carbonized to obtain solid core–shell cobalt catalysts, and then the catalytic performance for methanol conversion to DMC was investigated. The CoNC@NC catalyst, carbonized from Z67@Z8 with Z67 as the core and Z8 as the shell, shows that the carbonized NC shell effectively suppressed the aggregation of Co NPs and the Co NPs were only 15.4 nm, which was much smaller than those of NC@CoNC (34.5 nm) and CoNC (48.1 nm) catalysts. Compared with the CoNC catalyst, CoNC@NC significantly improved the pulse chemisorption of CH3OH and CO, leading to a significant increase in methanol conversion from 6.9% to 17.1%. Furthermore, the deactivation rate of the CoNC@NC catalyst (22.8%) was much lower than that of CoNC (59.4%) after five reaction cycles. The results of this work provide a new strategy for the design and preparation of solid cobalt catalysts for the oxidative carbonylation of methanol to DMC.

Funder

Shanxi Provincial Key Research and Development Project

National Natural Science Foundation of China

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3