Constrained minimum variance and covariance steering based on affine disturbance feedback control parameterization

Author:

Balci Isin M.1ORCID,Bakolas Efstathios1ORCID

Affiliation:

1. Department of Aerospace Engineering and Engineering Mechanics University of Texas at Austin Austin Texas USA

Abstract

AbstractThis paper deals with finite‐horizon minimum‐variance and covariance steering problems subject to constraints. The goal of the minimum variance problem is to steer the state mean of an uncertain system to a prescribed vector while minimizing the trace of its terminal state covariance whereas the goal in the covariance steering problem is to steer the covariance matrix of the terminal state to a prescribed positive definite matrix. The paper proposes a solution approach that relies on a stochastic version of the affine disturbance feedback control parametrization. In this control policy parametrization, the control input at each stage is expressed as an affine function of the history of disturbances that have acted upon the system. It is shown that this particular parametrization reduces the stochastic optimal control problems considered in this paper into tractable convex programs or difference of convex functions programs with essentially the same decision variables. In addition, the paper proposes a variation of this control parametrization that relies on truncated histories of past disturbances, which allows for sub‐optimal controllers to be designed that strike a balance between performance and computational cost. The suboptimality of the truncated policies is formally analyzed and closed form expressions are provided for the performance loss due to the use of the truncation scheme. Finally, the paper concludes with a comparative analysis of the truncated versions of the proposed policy parametrization and other standard policy parametrizations through numerical simulations.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3