Affiliation:
1. Division of Biostatistics UC Berkeley Berkeley California USA
2. Department of Statistics University of Michigan Ann Arbor Michigan USA
Abstract
AbstractResults obtained from reliably designed randomized experiments are often considered to be evidence of the highest grade for assessing the effectiveness of biomedical or behavioral interventions. Nevertheless, even with randomized experiments, statistical bias can arise in post hoc analysis of the data or through adaptive data collection. In this article, we discuss the need for and review some of the recent developments in statistical methodologies to address the issue of potential bias in adaptive experiments and in subgroup analysis. For adaptive experiments, we focus on adaptive treatment assignments. For subgroup analysis, we focus on post hoc subgroup selection and review several frequentist approaches for debiased inference on the best‐selected subgroup effects.This article is categorized under:
Applications of Computational Statistics > Clinical Trials
Funder
National Science Foundation
Subject
Statistics and Probability
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献