Coupling finite elements of class C1 on composite curved meshes for second order elliptic problems

Author:

Bhole Ashish12,Guillard Hervé12,Nkonga Boniface12,Rapetti Francesca12ORCID

Affiliation:

1. CASTOR Project Team Centre Inria d'Université Côte d'Azur Valbonne France

2. Département de Mathématiques Université Côte d'Azur Nice France

Abstract

SummaryFinite elements of class are suitable for the computation of magnetohydrodynamics instabilities in tokamak plasmas. In addition, isoparametric approximations allow for a precise alignment of the mesh with the magnetic field line. Mesh alignment is crucial to achieve axisymmetric equilibria accurately. It is also helpful to deal with the anisotropy nature of magnetized plasma flows. In this numerical framework, several practical simulations are now available. They help to understand better the operation of existing devices and predict the optimal strategies for using the international ITER tokamak under construction. However, a mesh‐aligned isoparametric representation suffers from the presence of critical points of the magnetic field (magnetic axis, X‐point). We here explore a strategy that combines aligned mesh out of the critical points with non‐aligned unstructured mesh in a region containing these points. By this strategy, we can avoid highly stretched elements and the numerical difficulties that come with them. The mesh‐aligned interpolation uses bi‐cubic Hemite‐Bézier polynomials on a structured mesh of curved quadrangular elements. On the other hand, we assume reduced cubic Hsieh‐Clough‐Tocher finite elements on an unstructured triangular mesh. Both meshes overlap, and the resulting formulation is a coupled discrete problem solved iteratively by a suitable one‐level Schwarz algorithm. In this paper, we will focus on the Poisson problem on a two‐dimensional bounded regular domain. This elliptic equation is a simplified version of the axisymmetric tokamak equilibrium one at the asymptotic limit of infinite major radius (large aspect ratio).

Funder

Agence Nationale de la Recherche

Publisher

Wiley

Subject

Applied Mathematics,Computer Science Applications,Mechanical Engineering,Mechanics of Materials,Computational Mechanics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3