IR Correlation Spectroscopy using Microgratings to be Compared with Dispersive IR Spectroscopy#

Author:

Jo Choong‐Man1,Choi Eunwoo1,Kim Seong Kyu1,Kim In Cheol2,Park Do‐Hyun3,Kang Young Il4

Affiliation:

1. Department of Chemistry Sungkyunkwan University Suwon 440‐746 Korea

2. National Institute for Nanomaterials Technology Pohang 790‐784 Korea

3. MOORI Technologies Co. Yongin 449‐863 Korea

4. The 5th R&D Institute ‐ 2 Agency for Defense Development Daejeon 305‐600 Korea

Abstract

Microgratings that were designed and fabricated to generate IR absorption spectra of SF6 and NH3 on diffraction into a specific detection angle were tested by correlation spectroscopy. The micrograting diffraction provides a reference spectrum for a target molecule, and its cross‐correlation with the transmission spectrum of a gas cell is obtained by varying the diffraction angle. As our optical setup can measure the dispersive transmission spectrum and the correlation spectrum under the same conditions, the two kinds of spectra were compared directly in terms of signal‐to‐noise ratio (SNR). The SNR’s of the correlation spectra were a few times lower than those of the dispersed spectra; therefore, the correlation spectroscopy can hardly be placed above the dispersive spectroscopy with respect to the SNR. The merit of the correlation spectroscopy is that a rather small range of modulation wavelength is needed to identify the target. Therefore, the correlation spectroscopy would be more useful for such target molecules whose spectra consist of broad peaks spread throughout a wide wavelength range.

Publisher

Wiley

Subject

General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3