Multi‐temporal scale aggregation refinement graph convolutional network for skeleton‐based action recognition

Author:

Li Xuanfeng1,Lu Jian1,Zhou Jian1,Liu Wei1,Zhang Kaibing1

Affiliation:

1. School of Electronics and Information Xi'an Polytechnic University Xi'an China

Abstract

AbstractSkeleton‐based human action recognition is gaining significant attention and finding widespread application in various fields, such as virtual reality and human‐computer interaction systems. Recent studies have highlighted the effectiveness of graph convolutional network (GCN) based methods in this task, leading to a remarkable improvement in prediction accuracy. However, most GCN‐based methods overlook the varying contributions of self, centripetal and centrifugal subsets. Besides, only a single‐scale temporal feature is adopted, and the multi‐temporal scale information is ignored. To this end, firstly, in order to differentiate the importance of different skeleton subsets, we develop a refinement graph convolution, which can adaptively learn a weight for each subset feature. Secondly, a multi‐temporal scale aggregation module is proposed to extract more discriminative temporal dynamic information. Furthermore, a multi‐temporal scale aggregation refinement graph convolutional network (MTSA‐RGCN) is proposed, and four‐stream structure is also adopted in this paper, which can comprehensively model complementary features and eventually achieves a significant performance boost. In the empirical experiments, the performance of our approach has been greatly improved on both NTU‐RGB+D 60 and NTU‐RGB+D 120 datasets, compared to other state‐of‐the‐art methods.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

Computer Graphics and Computer-Aided Design,Software

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3