Machine learning‐based amide proton transfer imaging using partially synthetic training data

Author:

Viswanathan Malvika12ORCID,Yin Leqi3,Kurmi Yashwant14,Zu Zhongliang124ORCID

Affiliation:

1. Vanderbilt University Institute of Imaging Science Vanderbilt University Medical Center Nashville Tennessee USA

2. Department of Biomedical Engineering Vanderbilt University Nashville Tennessee USA

3. School of Engineering Vanderbilt University Nashville Tennessee USA

4. Department of Radiology and Radiological Sciences Vanderbilt University Medical Center Nashville Tennessee USA

Abstract

AbstractPurposeMachine learning (ML) has been increasingly used to quantify CEST effect. ML models are typically trained using either measured data or fully simulated data. However, training with measured data often lacks sufficient training data, whereas training with fully simulated data may introduce bias because of limited simulations pools. This study introduces a new platform that combines simulated and measured components to generate partially synthetic CEST data, and to evaluate its feasibility for training ML models to predict amide proton transfer (APT) effect.MethodsPartially synthetic CEST signals were created using an inverse summation of APT effects from simulations and the other components from measurements. Training data were generated by varying APT simulation parameters and applying scaling factors to adjust the measured components, achieving a balance between simulation flexibility and fidelity. First, tissue‐mimicking CEST signals along with ground truth information were created using multiple‐pool model simulations to validate this method. Second, an ML model was trained individually on partially synthetic data, in vivo data, and fully simulated data, to predict APT effect in rat brains bearing 9 L tumors.ResultsExperiments on tissue‐mimicking data suggest that the ML method using the partially synthetic data is accurate in predicting APT. In vivo experiments suggest that our method provides more accurate and robust prediction than the training using in vivo data and fully synthetic data.ConclusionPartially synthetic CEST data can address the challenges in conventional ML methods.

Funder

National Institutes of Health

Publisher

Wiley

Subject

Radiology, Nuclear Medicine and imaging

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3