A One‐Class SVM‐Based Approach for Crossing‐Gate Rod Breakage Detection in a Railway Telemeter System

Author:

Kashiwao Tomoaki1,Tanoue Hiroya1,Shiraishi Noriyuki2,Misaki Yuki2,Ando Takashi2,Tanaka Daisuke3,Ikeda Kenji4

Affiliation:

1. Graduate School of Science and Engineering Kindai University 3‐4‐1 Kowakae, Higashi‐osaka, Osaka 577‐8502 Japan

2. Engineering Department Shikoku Railway Company 8‐33 Hamano‐cho, Takamatsu Kagawa 760‐8580 Japan

3. Department of Mechanical Engineering, National Institute of Technology Niihama College 7‐1 Yagumo‐cho, Niihama Ehime 792‐8580 Japan

4. Graduate School of Technology, Industrial and Social Sciences Tokushima University 2‐1 Minamijosanjima‐cho, Tokushima 770‐8506 Japan

Abstract

AbstractShikoku Railway Company (JR Shikoku) has installed a telemeter system network across all railway lines in the Shikoku area for collecting real‐time equipment data. In a previous study, we proposed a supervised machine learning‐based method to detect crossing‐gate rod breakages from the big data collected by the telemeter system. However, this method requires past data, including breakage cases of each crossing‐gate rod, for training. To avoid the past‐data problem, we propose a method that applies a one‐class support vector machine (SVM) with unsupervised learning to the rod breakage detection. The detection results were evaluated based on performance on real‐word railway data. © 2023 Institute of Electrical Engineers of Japan. Published by Wiley Periodicals LLC.

Publisher

Wiley

Subject

Electrical and Electronic Engineering

Reference3 articles.

1. TanakaD IshiokaH MisakiY TamehiroS IkedaK KashiwaoT.Big‐data analysis of railway‐telemeter system. Proc. of SAMCON 2019 SS1–5 Chiba Univ. Japan 2019; 1–4.

2. TanoueH KashiwaoT MisakiY AndoT IkedaK TanakaD.A machine‐learning based detection method of crossing‐gate rod breakage in a railway telemeter system Proc. of SAMCON 2021 pp. 278–279 Univ. of Tokyo Japan 2021.

3. Crossing‐Gate Rod Breakage Detection in a Railway Telemeter System Using Machine Learning

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3