Competition mode and soil nutrient status shape the role of soil microbes in the diversity–invasibility relationship

Author:

Li Haokun1ORCID,Hu Xinyu1,Geng Xinze1ORCID,Xiao Bo2,Miao Wei3,Xu Zhiguang1,Deng Yizhuo1,Jiang Bohan1,Hou Yuping1

Affiliation:

1. College of Life Sciences Ludong University Yantai China

2. Analysis and Testing Center Ludong University Yantai China

3. Kuyushan Forest Farm Yantai China

Abstract

AbstractUnderstanding the relationship between plant diversity and invasibility is essential in invasion ecology. Species‐rich communities are hypothesized to be more resistant to invasions than species‐poor communities. However, while soil microorganisms play a crucial role in regulating this diversity–invasibility relationship, the effects of plant competition mode and soil nutrient status on their role remain unclear. To address this, we conducted a two‐stage greenhouse experiment. Soils were first conditioned by growing nine native species separately in them for 1 year, then mixed in various configurations with soils conditioned using one, three, or six species, respectively. Next, we inoculated the mixed soil into sterilized substrate soil and planted the alien species Rhus typhina and native species Ailanthus altissima as test plants. We set up two competition modes (intraspecific and interspecific) and two nutrient levels (fertilization using slow‐release fertilizer and nonfertilization). Under intraspecific competition, regardless of fertilization, the biomass of the alien species was higher in soil conditioned by six native species. By contrast, under interspecific competition, the biomass increased without fertilization but remained stable with fertilization in soil conditioned by six native species. Analysis of soil microbes suggests that pathogens and symbiotic fungi in diverse plant communities influenced R. typhina growth, which varied with competition mode and nutrient status. Our findings suggest that the soil microbiome is pivotal in mediating the diversity–invasibility relationship, and this influence varies according to competition mode and nutrient status.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Shandong Province

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3