Modelling reindeer rut activity using on‐animal acoustic recorders and machine learning

Author:

Boucher Alexander J.1,Weladji Robert B.1ORCID,Holand Øystein2,Kumpula Jouko3

Affiliation:

1. Department of Biology Concordia University Montreal Quebec Canada

2. Department of Animal and Aquacultural Sciences Norwegian University of Life Sciences Ås Norway

3. Natural Resources Institute of Finland (Luke), Reindeer Research Station Helsinki Finland

Abstract

AbstractFor decades, researchers have employed sound to study the biology of wildlife, with the aim to better understand their ecology and behaviour. By utilizing on‐animal recorders to capture audio from freely moving animals, scientists can decipher the vocalizations and glean insights into their behaviour and ecosystem dynamics through advanced signal processing. However, the laborious task of sorting through extensive audio recordings has been a major bottleneck. To expedite this process, researchers have turned to machine learning techniques, specifically neural networks, to streamline the analysis of data. Nevertheless, much of the existing research has focused predominantly on stationary recording devices, overlooking the potential benefits of employing on‐animal recorders in conjunction with machine learning. To showcase the synergy of on‐animal recorders and machine learning, we conducted a study at the Kutuharju research station in Kaamanen, Finland, where the vocalizations of rutting reindeer were recorded during their mating season. By attaching recorders to seven male reindeer during the rutting periods of 2019 and 2020, we trained convolutional neural networks to distinguish reindeer grunts with a 95% accuracy rate. This high level of accuracy allowed us to examine the reindeers' grunting behaviour, revealing patterns indicating that older, heavier males vocalized more compared to their younger, lighter counterparts. The success of this study underscores the potential of on‐animal acoustic recorders coupled with machine learning techniques as powerful tools for wildlife research, hinting at their broader applications with further advancement and optimization.

Funder

Canadian Network for Research and Innovation in Machining Technology, Natural Sciences and Engineering Research Council of Canada

NordForsk

Publisher

Wiley

Reference53 articles.

1. Abadi M. Barham P. Chen J. Chen Z. Davis A. Dean J. Devin M. Ghemawat S. Irving G. Isard M. Kudlur M. Levenberg J. Monga R. Moore S. Murray D. G. Steiner B. Tucker P. Vasudevan V. Warden P. …Zheng X.(2016).TensorFlow: A system for large‐scale machine learning.Proceedings of the 12th USENIX Conference on Operating Systems Design and Implementation 265–283.https://doi.org/10.48550/arXiv.1605.08695

2. Energy Expenditure for Reproduction in Male Red Deer

3. Highly Competitive Reindeer Males Control Female Behavior during the Rut

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3