The Yellow River is the key corridor for Tamarix austromongolica to disperse from Asia inlands to east seashores

Author:

Yang Hongxiao1ORCID,Liu Xinwei1,Gan Honghao2,Sun Jia2,Pan Yanxia1,Chu Jianmin23

Affiliation:

1. Qingdao Agricultural University Qingdao China

2. Coastal Forestry Research Center of National Forestry and Grassland Administration, Research Institute of Forestry Chinese Academy of Forestry Beijing China

3. Experimental Center of Desert Forestry Chinese Academy of Forestry Dengkou China

Abstract

AbstractPlants of the Tamarix L. genus (Tamaricaceae) mainly occur in arid inlands of Asia, but a few species occur in the coastal areas of China, and the Yellow River may account for this. This study was conducted to elucidate whether and how the Yellow River affects the pattern and development of the Tamarix genus, involving two critical species of Tamarix austromongolica Nakai and Tamarix chinensis Lour. With geographical distribution data, relationships of T. austromongolica with the Yellow River and the pertaining watershed were examined using the method of random permutation. The base‐diameter structures of T. austromongolica populations were investigated and compared between different riparian lands that suffer discriminative water inundation. The nearest distances from T. austromongolica locations to the Yellow River and the pertaining watershed were significantly lower than the theoretical expectations in the condition of random distribution (p < .05). In many riparian lands along the Yellow River, wild T. austromongolica populations occurred with vigorous juveniles, despite frequent human disturbances. In coastal areas near the present estuary of the river, wild T. austromongolica plants were still found. In T. austromongolica populations near the Yellow River and sea, the rates of juvenile plants were significantly higher than in other populations situated farther from the river or sea. These findings suggest that the Yellow River can facilitate the eastward dispersal of Tamarix plants that reasonably caused the evolution from T. austromongolica to T. chinensis in ancient coasts in the China east.

Funder

National Natural Science Foundation of China

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3