Plant species phenology differs between climate and land‐use scenarios and relates to plant functional traits

Author:

Plos Carolin12ORCID,Hensen Isabell12,Korell Lotte13,Auge Harald13,Römermann Christine14

Affiliation:

1. German Centre for Integrative Biodiversity Research (iDiv) Halle‐Jena‐Leipzig Leipzig Germany

2. Institute of Biology, Geobotany and Botanical Garden, Martin Luther University Halle‐Wittenberg Halle (Saale) Germany

3. Department of Community Ecology, Helmholtz‐Centre for Environmental Research (UFZ) Halle (Saale) Germany

4. Institute of Ecology and Evolution with Herbarium Haussknecht and Botanical Garden, Friedrich Schiller University Jena Jena Germany

Abstract

AbstractPhenological shifts due to changing climate are often highly species and context specific. Land‐use practices such as mowing or grazing directly affect the phenology of grassland species, but it is unclear if plants are similarly affected by climate change in differently managed grassland systems such as meadows and pastures. Functional traits have a high potential to explain phenological shifts and might help to understand species‐specific and land‐use‐specific phenological responses to changes in climate. In the large‐scale field experiment Global Change Experimental Facility (GCEF), we monitored the first flowering day, last flowering day, flowering duration, and day of peak flowering, of 17 herbaceous grassland species under ambient and future climate conditions, comparing meadows and pastures. Both climate and land use impacted the flowering phenology of plant species in species‐specific ways. We did not find evidence for interacting effects of climate and land‐use type on plant phenology. However, the data indicate that microclimatic and microsite conditions on meadows and pastures were differently affected by future climate, making differential effects on meadows and pastures likely. Functional traits, including the phenological niche and grassland utilization indicator values, explained species‐specific phenological climate responses. Late flowering species and species with a low mowing tolerance advanced their flowering more strongly under future climate. Long flowering species and species following an acquisitive strategy (high specific leaf area, high mowing tolerance, and high forage value) advanced their flowering end more strongly and thus more strongly shortened their flowering under future climate. We associated these trait–response relationships primarily with a phenological drought escape during summer. Our results provide novel insights on how climate and land use impact the flowering phenology of grassland species and we highlight the role of functional traits in mediating phenological responses to climate.

Publisher

Wiley

Reference91 articles.

1. Changes in European spring phenology

2. Responses of spring phenology to climate change

3. Bartoń K.(2023).MuMIn: Multi‐Model Inference. Available at:https://cran.r‐project.org/web/packages/MuMIn/index.html(Accessed: 12 April 2024).

4. Fitting Linear Mixed-Effects Models Usinglme4

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3