Machine learning‐enabled two‐port wideband MIMO hybrid rectangular dielectric resonator antenna for n261 5G NR millimeter wave

Author:

Rai Jayant Kumar1ORCID,Ranjan Pinku1ORCID,Kumar Santosh2,Chowdhury Rakesh1,Kumar Somesh1,Sharma Anand3ORCID

Affiliation:

1. Department of Electrical and Electronics Engineering ABV Indian Institute of Information Technology and Management Gwalior India

2. Department of Electronics and Communication Engineering Government Polytechnic Pilibhit Pilibhit India

3. Department of Electronics and Communication Engineering Motilal Nehru National Institute of Technology Allahabad India

Abstract

SummaryIn this article, a two‐port multiple‐input multiple‐output (MIMO) hybrid rectangular dielectric resonator antenna (DRA) with machine learning (ML) approach for the n261 5G New Radio (NR) application is presented. The proposed antenna is designed on an RT/duroid 5880 (Ɛr = 2.2) substrate activated by 50 Ω, L‐shaped microstrip slot feeds beneath both DRAs. The isolation is more than 19 dB, and the gain is 10 dBi in the operating frequency range. The proposed antenna is optimized through knowledge‐based neural networks (KBNN), artificial neural networks (ANNs), and ML. The optimal design parameters of the proposed antenna are accomplished using the ML optimization approach, which includes ridge regression, ANNs, and KBNN. KBNN ML techniques provide 96.88% accuracy and correctly predict the S‐parameters of the proposed antenna. The MIMO diversity parameters like envelope correlation coefficient (ECC), diversity gain (DG), total active reflection coefficient (TARC), and channel capacity loss (CCL) are calculated and found within the limits. Hence, the proposed antenna is used for 5G NR mm‐wave application.

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3