Preparation of nanopillar array electrode of iridium oxide for high performance of pH sensor and its real‐time sweat monitoring

Author:

Yoon Eun Seop1,Park Hong Jun1,Kil Min Sik1,Kim Jueun2,Lee Kyoung G.2,Choi Bong Gill1

Affiliation:

1. Department of Chemical Engineering Kangwon National University Samcheok South Korea

2. Center for Nano Bio Development National NanoFab Center Daejeon South Korea

Abstract

AbstractA highly sensitive potentiometric pH sensor was developed based on nanopillar array electrodes of iridium oxide. The as‐prepared pH sensor exhibited a high pH sensitivity (69.43 mV/pH), fast response time (8.1 s), and good durability (0.76 mV/h). The sensing performance of the pH sensor was maintained under mechanical bending and even after 1000 repetitive bending/releasing cycles. As a proof‐of‐concept, a wearable headband sensor was fabricated by integrating the pH sensor with a wireless electronic module based on a printed circuit board. The on‐body test indicated that the wearable pH sensor provides reliable and stable data in the real‐time monitoring of pH changes in human sweat during stationary indoor cycling. The pH sensors based on nanopillar array electrodes of iridium oxide have great potential in many portable or wearable applications in healthcare systems, non‐invasive diagnostics, environmental analysis, and food sensors.

Publisher

Wiley

Subject

General Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3