Polypeptide composition of major oilseed proteins and functional properties of extracted protein products: A concise review

Author:

Aluko Rotimi E.1ORCID

Affiliation:

1. Department of Food and Human Nutritional Sciences University of Manitoba Winnipeg Manitoba Canada

Abstract

AbstractOilseeds are grown mainly for their oil content but the residues (meals) that remain after defatting are excellent sources of plant protein ingredients. However, to serve as useful ingredients, the extracted proteins must meet industry expectations in terms of functional performance. Protein functionality is influenced by structural conformation, amino acid composition, type of polypeptides, presence of non‐protein materials (carbohydrates, lipids, and polyphenols), which in turn can be modified by the extraction method. Defatted oilseed meals are extracted mostly through the pH shift method, which involves alkaline solubilization followed by acid‐induced protein precipitation at the isoelectric point. A less popular method is called the protein micellar mass whereby the oilseed meal proteins are extracted with a NaCl solution, which is later diluted to reduce the ionic strength to a level where the proteins are no longer soluble and hence precipitate. A third method utilizes carbohydrases and phytases to first digest non‐protein materials from the oilseed meal into smaller units that are then removed by membrane ultrafiltration to leave behind a protein‐rich extract. These methods produce mainly two types of isolated oilseed proteins, concentrates (60%–89% protein content) and isolates (≥90% protein content), which can differ in terms of their protein conformation, solubility, and functionality as food ingredients. Therefore, this review provides an overview of the extraction and isolation as well as structural and functional properties of soybean, peanut, canola, hemp seed, sunflower, and sesame seed proteins.

Funder

Canada Research Chairs

Natural Sciences and Engineering Research Council of Canada

Publisher

Wiley

Subject

Organic Chemistry,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3