A putative adverse outcome network for neonatal mortality and lower birth weight in rodents: Applicability to per‐ and polyfluoroalkyl substances and relevance to human health

Author:

Rogers John M.1ORCID,Heintz Melissa M.2ORCID,Thompson Chad M.3,Haws Laurie C.4

Affiliation:

1. ToxStrategies LLC Raleigh North Carolina USA

2. ToxStrategies LLC Asheville North Carolina USA

3. ToxStrategies LLC Katy Texas USA

4. ToxStrategies LLC Austin Texas USA

Abstract

AbstractBackgroundSome per‐ and poly‐fluoroalkyl substances (PFAS) cause neonatal mortality and lower birth weight in rodents. We constructed an Adverse Outcome Pathway (AOP) network for neonatal mortality and lower birth weight in rodents, comprising three putative AOPs. We then assessed strengths of the evidence for the AOPs and applicability to PFAS. Finally, we considered the relevance of this AOP network to human health.MethodsLiterature searches targeted PFAS, peroxisome proliferator‐activated receptor (PPAR) agonists, other nuclear receptors, relevant tissues, and developmental targets. We used reviews of established biology and described results of studies with prenatal PFAS exposure that assessed birth weight and neonatal survival. Molecular initiating events (MIEs) and key events (KEs) were proposed and strengths of KE relationships (KERs), applicability to PFAS, and human relevance were assessed.ResultsNeonatal mortality has been observed in rodents following gestational exposure to most longer chain PFAS studied, often coincident with lower birth weight. In AOP 1, PPARα activation and PPARγ activation or downregulation are MIEs; placental insufficiency, fetal nutrient restriction, neonatal hepatic glycogen deficit, and hypoglycemia are KEs leading to neonatal mortality and lower birth weight. In AOP 2, constitutive androstane receptor (CAR) and pregnane X receptor (PXR) activation upregulates Phase II metabolism, lowering maternal circulating thyroid hormones. In AOP 3, disrupted pulmonary surfactant function and PPARγ downregulation cause neonatal airway collapse and mortality from respiratory failure.ConclusionsIt is likely that different components of this AOP network will apply to different PFAS, largely determined by which nuclear receptors they activate. The MIEs and KEs in this AOP network can occur in humans, but differences in PPAR structure and function, and the timeline of liver and lung development, suggest that humans may be less susceptible to this AOP network. This putative AOP network elucidates knowledge gaps and research needed to better understand the developmental toxicity of PFAS.

Publisher

Wiley

Subject

Health, Toxicology and Mutagenesis,Developmental Biology,Toxicology,Embryology,Pediatrics, Perinatology and Child Health

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3