A chemical genetic screen with the EXO70 inhibitor Endosidin2 uncovers potential modulators of exocytosis in Arabidopsis

Author:

Li Xiaohui12ORCID,Wang Diwen12ORCID,Yin Xianglin3ORCID,Dai Mingji34ORCID,Staiger Christopher J.125ORCID,Zhang Chunhua12ORCID

Affiliation:

1. Department of Botany and Plant Pathology Purdue University West Lafayette Indiana USA

2. Center for Plant Biology Purdue University West Lafayette Indiana USA

3. Department of Chemistry Purdue University West Lafayette Indiana USA

4. Department of Chemistry Emory University Atlanta Georgia USA

5. Department of Biological Sciences Purdue University West Lafayette Indiana USA

Abstract

AbstractExocytosis plays an essential role in delivering proteins, lipids, and cell wall polysaccharides to the plasma membrane and extracellular spaces. Accurate secretion through exocytosis is key to normal plant development as well as responses to biotic and abiotic stresses. During exocytosis, an octameric protein complex named the exocyst facilitates the tethering of secretory vesicles to the plasma membrane. Despite some understanding of molecular and cellular aspects of exocyst function obtained through reverse genetics and direct interaction assays, knowledge about upstream modulators and genetic interactors remains limited. Traditional genetic screens encounter practical issues in exocyst subunit mutant backgrounds, such as lethality of certain knockout mutants and/or potential redundancy of EXO70 homologs. To address these challenges, this study leverages the tunable and reversible nature of chemical genetics, employing Endosidin2 (ES2)—a synthetic inhibitor of EXO70—for a large‐scale chemical genetic mutant screen in Arabidopsis. This approach led to the identification of 70 ES2‐hypersensitive mutants, named es2s. Through a whole‐genome sequencing‐based mapping strategy, 14 nonallelic es2s mutants were mapped and the candidate mutations reported here. In addition, T‐DNA insertion lines were tested as alternative alleles to identify causal mutations. We found that T‐DNA insertion alleles for DCP5, VAS1/ISS1, ArgJ, and MEF11 were hypersensitive to ES2 for root growth inhibition. This research not only offers new genetic resources for systematically identifying molecular players interacting with the exocyst in Arabidopsis but also enhances understanding of the regulation of exocytosis.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3