Parameter learning of multi‐input multi‐output Hammerstein system with measurement noises utilizing combined signals

Author:

Li Feng1,Sun Xueqi1,Cao Qingfeng2

Affiliation:

1. School of Electrical and Information Engineering Jiangsu University of Technology Changzhou China

2. School of Electrical, Energy and Power Engineering Yangzhou University Yangzhou China

Abstract

SummaryIn this article, the parameter learning scheme for the multi‐input multi‐output (MIMO) Hammerstein nonlinear systems under measurement noises is studied, which is derived by exploiting the correlation analysis and data filtering technique. The coupled MIMO Hammerstein system presented involves a static nonlinear subsystem modeled by neural fuzzy model (NFM), and a dynamic linear subsystem established by autoregressive moving average with extra input (ARMAX) model. To learn the unknown parameter of the MIMO Hammerstein system, the combined signals are designed to realize that identification of the nonlinear subsystem is separated from that of linear subsystem. First, the correlation properties of separable signals in a nonlinear system are analyzed, then the parameters of the linear subsystem are estimated utilizing correlation analysis, which can deal with the issue of unmeasured intermediate variable in the Hammerstein system. Second, the data filtering technique is introduced to derive the data filtering‐based recursive least squares technique for learning the nonlinear subsystem parameter, which can reduce the impact of the moving average noise and improve the precision of parameter estimation. Finally, the effectiveness and feasibility of the proposed identification scheme is proved by numerical simulation and nonlinear pH process.

Funder

National Natural Science Foundation of China

Changzhou Municipal Science and Technology Bureau

Qinglan Project of Jiangsu Province of China

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3