Experimental and numerical evaluation of the surface‐localized heating capacity of the photothermal nanocomposite‐incorporated knit fabrics

Author:

Alsikh Abdulkarim1,Valipouri Afsaneh1ORCID,Nasr Esfahany Mohsen2,Hosseini Ravandi Seyed Abdolkarim1

Affiliation:

1. Department of Textile Engineering Isfahan University of Technology Isfahan Iran

2. Department of Chemical Engineering Isfahan University of Technology Isfahan Iran

Abstract

AbstractPersonal protection and perspiration evaporation are major features of a functional clothing system intended for outdoor environment applications. The aim of this article is to investigate the dynamic performance of an advanced multifunctional textile under solar radiation. The influence of the fabric properties of the double‐layer structure and the optical property of the photothermal nanocomposite based‐porous membrane (polyacrylonitrile PAN/carbon nanotube CNT) on the evaporation performance were experimentally and numerically discussed. Initially, a dedicated experimental study was conducted to measure the actual evaporation performance of the functional fabric. Following this, a two‐dimensional multi‐fluid model, simulated using COMSOL software, is applicable to predict experimental evaporation rates with a reasonable accuracy of 90%. The results showed that the dense structure had a greater wicking‐flow rate of 0.5 cm2 s−1 but lower evaporation performance in contrast to the permeable fabric. The incorporation of the photothermal nanofibers into the double‐layer fabric structure enhanced the surface‐localized heating capacity. Through the evaporation process, compared to conventional fabric, the advanced fabric structure exhibited approximately 3.5–4.4°C higher outer surface temperature. We concluded that the proposed multi‐layer structure has excellent potential to enhance the solar absorption efficiency in the visible range by 50% on average. Besides, the improved evaporation performance of the functional structure was 48% and 55%, respectively, under 0.6 and 1.0 sun illumination. In addition to the clothing field, this study can be extended for wide‐reaching applications based on solar vapor generation systems.

Publisher

Wiley

Subject

Materials Chemistry,Polymers and Plastics,General Chemistry,Ceramics and Composites

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3