Smart management of combined sewer overflows: From an ancient technology to artificial intelligence

Author:

Saddiqi M. Matin1ORCID,Zhao Wanqing2ORCID,Cotterill Sarah3ORCID,Dereli Recep Kaan1ORCID

Affiliation:

1. School of Chemical and Bioprocess Engineering University College Dublin Dublin Ireland

2. School of Computing Newcastle University Newcastle upon Tyne United Kingdom

3. School of Civil Engineering University College Dublin Dublin Ireland

Abstract

AbstractSewer systems are an essential part of sanitation infrastructure for protecting human and ecosystem health. Initially, they were used to solely convey stormwater, but over time municipal sewage was discharged to these conduits and transformed them into combined sewer systems (CSS). Due to climate change and rapid urbanization, these systems are no longer sufficient and overflow in wet weather conditions. Mechanistic and data‐driven models have been frequently used in research on combined sewer overflow (CSO) management integrating low‐impact development and gray‐green infrastructures. Recent advances in measurement, communication, and computation technologies have simplified data collection methods. As a result, technologies such as artificial intelligence (AI), geographic information system, and remote sensing can be integrated into CSO and stormwater management as a part of the smart city and digital twin concepts to build climate‐resilient infrastructures and services. Therefore, smart management of CSS is now both technically and economically feasible to tackle the challenges ahead. This review article explores CSO characteristics and associated impact on receiving waterbodies, evaluates suitable models for CSO management, and presents studies including above‐mentioned technologies in the context of smart CSO and stormwater management. Although integration of all these technologies has a big potential, further research is required to achieve AI‐controlled CSS for robust and agile CSO mitigation.This article is categorized under: Engineering Water > Sustainable Engineering of Water Science of Water > Water and Environmental Change

Publisher

Wiley

Subject

Management, Monitoring, Policy and Law,Ocean Engineering,Water Science and Technology,Aquatic Science,Ecology,Oceanography

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3