Analysis of single nuclear chromatin accessibility reveals unique myeloid populations in human pancreatic ductal adenocarcinoma

Author:

Pratt Hillary G.12,Ma Li3,Dziadowicz Sebastian A.3,Ott Sascha4,Whalley Thomas5,Szomolay Barbara6,Eubank Timothy D.1237,Hu Gangqing23,Boone Brian A.1238ORCID

Affiliation:

1. Cancer Cell Biology West Virginia University Morgantown West Virginia USA

2. WVU Cancer Institute West Virginia University Morgantown West Virginia USA

3. Department of Microbiology Immunology and Cell Biology West Virginia University Morgantown West Virginia USA

4. Warwick Medical School University of Warwick Coventry UK

5. School of Biosciences Cardiff University Cardiff UK

6. Division of Infection and Immunity & Systems Immunity Research Institute Cardiff University Cardiff UK

7. In Vivo Multifunctional Magnetic Resonance Center West Virginia University Morgantown West Virginia USA

8. Department of Surgery West Virginia University Morgantown West Virginia USA

Abstract

AbstractBackgroundA better understanding of the pancreatic ductal adenocarcinoma (PDAC) immune microenvironment is critical to developing new treatments and improving outcomes. Myeloid cells are of particular importance for PDAC progression; however, the presence of heterogenous subsets with different ontogeny and impact, along with some fluidity between them, (infiltrating monocytes vs. tissue‐resident macrophages; M1 vs. M2) makes characterisation of myeloid populations challenging. Recent advances in single cell sequencing technology provide tools for characterisation of immune cell infiltrates, and open chromatin provides source and function data for myeloid cells to assist in more comprehensive characterisation. Thus, we explore single nuclear assay for transposase accessible chromatin (ATAC) sequencing (snATAC‐Seq), a method to analyse open gene promoters and transcription factor binding, as an important means for discerning the myeloid composition in human PDAC tumours.MethodsFrozen pancreatic tissues (benign or PDAC) were prepared for snATAC‐Seq using 10× Chromium technology. Signac was used for preliminary analysis, clustering and differentially accessible chromatin region identification. The genes annotated in promoter regions were used for Gene Ontology (GO) enrichment and cell type annotation. Gene signatures were used for survival analysis with The Cancer Genome Atlas (TCGA)‐pancreatic adenocarcinoma (PAAD) dataset.ResultsMyeloid cell transcription factor activities were higher in tumour than benign pancreatic samples, enabling us to further stratify tumour myeloid populations. Subcluster analysis revealed eight distinct myeloid populations. GO enrichment demonstrated unique functions for myeloid populations, including interleukin‐1b signalling (recruited monocytes) and intracellular protein transport (dendritic cells). The identified gene signature for dendritic cells influenced survival (hazard ratio = .63, p = .03) in the TCGA‐PAAD dataset, which was unique to PDAC.ConclusionsThese data suggest snATAC‐Seq as a method for analysis of frozen human pancreatic tissues to distinguish myeloid populations. An improved understanding of myeloid cell heterogeneity and function is important for developing new treatment targets in PDAC.

Funder

West Virginia Clinical and Translational Science Institute

National Institute of General Medical Sciences

National Cancer Institute

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3