Preparation of carboxy sulfonic acid‐containing copolymer scale inhibitors and their scale inhibition effect on CaCO3

Author:

Ma Wentao1,Hu Zhijie2,Zhang Yu1ORCID,Ma Jie1,Xin Guopeng1

Affiliation:

1. College of Chemistry and Environmental Engineering Hubei Minzu University Enshi Hubei People's Republic of China

2. Exploration and Development Research Institute of Changqing Oilfield Branch China National Petroleum Corporation Xian Shanxi People's Republic of China

Abstract

AbstractFree radical polymerization was selected to obtain a promising copolymer scale inhibitor IA‐AM‐SAS with good water solubility and temperature and salt resistance, which is suitable for the treatment of surface pipeline water in oil fields, using itaconic acid (IA), acrylamide (AM), and sodium acrylsulfonate (SAS) as the monomers. The structure of the synthesized copolymer was verified by Fourier transform infrared spectroscopy and nuclear magnetic resonance hydrogen spectroscopy. Thermogravimetric results showed that the copolymer does not undergo significant thermal degradation at temperatures below 356°C, indicating that the copolymer has good thermal stability. The molecular weights of the polymers at different monomer ratios were measured using gel permeation chromatography and the relationship between the molecular weights and scale inhibition performance was discussed. The results showed that the scale inhibition effect was best when the monomer molar ratio n(IA): n(AM): n(SAS) was 0.5:2:1.5 and the number of average molecular weight of the prepared copolymer was 7712 g/mol, and the inhibition efficiency of CaCO3 was 84.02% when IA‐AM‐SAS was at a concentration of 30 mg L−1, and the inhibition rate was measured by the standard of static scale inhibition test in the oilfield measured. The range of conditions (PH, Ca2+ concentration, water temperature, and time) of the static scale inhibition test was then expanded using a one‐way controlled variable experiment to explore the performance of IA‐AM‐SAS scale inhibitors under different water quality conditions. The scale inhibition mechanism was explored by scanning electron microscopy, x‐ray diffraction, and x‐ray photoelectron spectroscopy. Briefly, the combination of multiple functional groups enables IA‐AM‐SAS to be applied in complex and challenging environments.

Publisher

Wiley

Subject

Materials Chemistry,Polymers and Plastics,Surfaces, Coatings and Films,General Chemistry

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3