Investigation of novel polyanilines as new antioxidants for ethylene propylene diene monomer rubber composites

Author:

Zidan T. A.1ORCID,Kandil H. S.1

Affiliation:

1. Department of Polymers and Pigments National Research Centre Dokki Giza Egypt

Abstract

AbstractOxidative aging is a significant deterioration process that affects the performance and durability of rubber materials in various applications. Therefore, this study focuses on the development of new antioxidants‐based on polyaniline for ethylene propylene diene monomer (EPDM) rubber to enhance its resistance to oxidative aging. The novel polyanilines were prepared using in situ polymerization method and characterized using Fourier transforms infrared (FTIR) and thermogravimetric analysis (TGA). FTIR illustrates the success synthesis of polyanilines as it shows their characteristic functional groups. The thermal stability of the formed polyanilines is discussed through TGA and derivative of thermogravimetry (DTG) curves. The curves prove the good thermal stability of the synthesized polymers. The prepared polyaniline compounds were mixed to carbon black filled‐EPDM rubber composites using a roll mill and then vulcanized using sulfur curing process. Accelerated aging tests for the prepared EPDM rubber composites were conducted to evaluate the effectiveness of the antioxidants. Moreover, their impact on rheometer, mechanical, and swelling properties was studied. The results showed that the EPDM samples with the prepared polyaniline compounds exhibited improved oxidative properties compared to the EPDM sample with commercial antioxidant 2,2,4‐trimethyl‐1,2‐dihydroquinoline. These findings suggest that the novel antioxidants have the potential to enhance the durability and performance of EPDM rubber in various applications.

Publisher

Wiley

Subject

Materials Chemistry,Polymers and Plastics,Surfaces, Coatings and Films,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3