Affiliation:
1. Jiangsu Province Engineering Research Center of High‐Level Energy and Power Equipment, School of Mechanical Engineering and Rail Transit Changzhou University Changzhou China
2. Anhui Province Key Laboratory of Advanced Numerical Control&Servo Technology Anhui Polytechnic University Wuhu China
Abstract
AbstractIn this study, three kinds of newly flexible positive temperature coefficient (PTC) materials are fabricated by a simple preparation method. Due to introducing the hybrid filler of carbon nanotube and carbon black, these materials exhibit remarkable PTC effect including the PTC intensity of more than four‐orders magnitude and the resistivity‐temperature coefficient of 154%/°C. The Curie points of PTC materials are regulated to room‐temperature range by the low melting phase and influenced by melting onset temperatures of their solid–liquid phase change. With the help of transmission electron microscope, the micro‐capsule structure of the phase change regions is observed, and the hybrid conductive fillers randomly distribute in the blend matrix to construct three‐dimensional conductive network. Using the PTC materials as a heating element, the equilibrium temperature of the controlled device can be maintained around their Curie point without any control method. Moreover, the adaptive thermal control effect becomes more obvious with the increase of ambient temperature and initial heating power. Furthermore, the thermal control accuracy fluctuates within 0.15°C without any external control method, and is improved to round 0.08°C in combination with the switch control method. This study provides a new method for the thermal control of electronic devices in the requirement of lightweight and miniaturization at low temperature environment.
Funder
China Postdoctoral Science Foundation
Subject
Materials Chemistry,Polymers and Plastics,Surfaces, Coatings and Films,General Chemistry
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献