Advancing CYP2D6 Pharmacogenetics through a Pharmacoequity Lens

Author:

Kehinde Oyinlade1ORCID,Ramsey Laura B.23ORCID,Gaedigk Andrea45ORCID,Oni‐Orisan Akinyemi678ORCID

Affiliation:

1. Child and Adolescents Mental Health Service Center Federal Neuro‐Psychiatric Hospital Lagos Nigeria

2. Department of Pediatrics University of Cincinnati College of Medicine Cincinnati Ohio USA

3. Divisions of Clinical Pharmacology and Research in Patient Services Cincinnati Children's Hospital Medical Center Cincinnati Ohio USA

4. Division of Clinical Pharmacology, Toxicology & Therapeutic Innovation Children's Mercy Research Institute (CMRI) Kansas City Missouri USA

5. School of Medicine University of Missouri‐Kansas City Kansas City Missouri USA

6. Department of Clinical Pharmacy University of California San Francisco San Francisco California USA

7. Institute for Human Genetics University of California San Francisco San Francisco California USA

8. Department of Bioengineering and Therapeutic Sciences University of California San Francisco San Francisco California USA

Abstract

Over 20% of US Food and Drug Administration (FDA)‐approved drugs in the United States are metabolized by the hepatic enzyme cytochrome P450 2D6 (CYP2D6). The gene encoding CYP2D6 is highly polymorphic and genetic variation has been shown to impact drug response for many commonly dispensed drugs including opioids and antidepressants. Thus, it is important to understand an individual's CYP2D6 metabolizer status to optimize treatment outcomes for patients taking medications that are metabolized by this enzyme. Consequently, clinical CYP2D6 pharmacogenetic testing is being implemented by a growing number of health centers. Furthermore, clinical guidelines currently recommend adapting therapeutic regimens based on CYP2D6 genotype‐informed phenotype. However, CYP2D6 genetic variation varies considerably across global populations and many allelic variants, or star alleles, are predominantly found in certain ancestral populations. Although CYP2D6 genetic variation has been extensively studied, there is still a paucity of information for many non‐European populations. As has been shown for other pharmacogenes in randomized controlled trials, results from European populations cannot simply be extrapolated to other groups and, in some cases, even has the potential to cause harm. Therefore, enhanced inclusion in pharmacogenetic studies is urgently needed to increase ancestral representation, determine the extent of global CYP2D6 genetic variation (e.g., ancestry‐specific variants), and determine the clinical impact of this variation on clinical treatment outcome. This review highlights knowledge gaps, challenges, and future directions in CYP2D6 pharmacogenomics through a unique pharmacoequity lens to address health inequities that hamper our ability to optimize drug therapy for improved pharmacological outcomes in diverse populations globally.

Publisher

Wiley

Subject

Pharmacology (medical),Pharmacology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3