Affiliation:
1. Department of Chemical and Materials Engineering University of Suwon Hwaseong South Korea
2. MDX Research Center for Element Strategy International Research Frontiers Initiative, Tokyo Institute of Technology Yokohama Japan
3. Department of Materials Science and Engineering Korea Advanced Institute of Science and Technology Daejeon South Korea
4. Department of Materials Science and Engineering Research Institute of Advanced Materials, Seoul National University Seoul South Korea
Abstract
AbstractAs a next‐generation photovoltaic device, perovskite solar cells are rapidly emerging. Nevertheless, both solution and device stability pose challenges for commercialization due to chemical degradation caused by internal and external factors. Especially, the decomposition of iodoplumbate in a perovskite solution hinders the long‐term use of perovskite solutions. Moreover, the synthesis of stable perovskites at low temperature is important for stable devices and wide applications (flexible devices and high reproducibility). Herein, the critical composition of perovskite is found to obtain high stabilities of both iodoplumbate and perovskite crystals by utilizing CsPbBr3 and FAPbI3, exhibiting high device performance and long‐term solution storage. The novel composition of CsPbBr3‐alloyed FAPbI3 not only crystallizes under annealing‐free conditions but also demonstrates excellent iodoplumbate stability for 100 days (∼3000 h) without any degradation. Furthermore, high device stabilities are achieved over 2000 and 3000 h under extreme conditions of A.M. 1.5 and 85°C/85% relative humidity, respectively. Overall, the device exhibited a high power conversion efficiency of 23.4%, and furthermore, CsPbBr3‐alloyed FAPbI3 was devoted to widen the applications in both flexible and carbon‐electrode devices, thereby addressing both scientific depths and potential commercial materials.
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献