Affiliation:
1. Department of Bioelectric, School of Advanced Technologies in Medicine Isfahan University of Medical Sciences Isfahan Iran
2. Department of Bioinformatics and Systems Biology, School of Advanced Technologies in Medicine Isfahan University of Medical Sciences Isfahan Iran
3. Department of Medicinal Chemistry, School of Pharmacy and Pharmaceutical Sciences Isfahan University of Medical Sciences Isfahan Iran
Abstract
AbstractAngiogenesis, a crucial process in tumor growth, is widely recognized as a key factor in cancer progression. The vascular endothelial growth factor (VEGF) signaling pathway is important for its pivotal role in promoting angiogenesis. The primary objective of this study was to identify a powerful classifier for distinguishing compounds as active or inactive inhibitors of VEGF receptors. To build the machine learning model, compounds were sourced from the BindingDB database. A variety of common feature selection techniques, including both filter‐based and wrapper‐based methods, were applied to reduce dimensionality, subsequently, overfitting problem. Robust and accurate tree‐based classifiers were employed in the classification procedure. Application of the extra‐tree classifier using the MultiSURF* feature selection method provided a model with superior accuracy (83.7%) compared with other feature selection techniques. High‐throughput molecular docking followed by an accurate docking and comprehensive analysis of the results was performed to provide the best possible inhibitors of these receptors. Comprehensive analysis of the docking results revealed successful prediction of molecules with VEGFR1 and VEGFR2 inhibitory activity. These results emphasized that the performance of the extra‐tree model, coupled with MultiSURF* feature selection, surpassed other methods in identifying chemical compounds targeting specific VEGF receptors.
Funder
National Institute for Medical Research Development