A note on the width of sparse random graphs

Author:

Do Tuan Anh1,Erde Joshua1,Kang Mihyun1

Affiliation:

1. Institute of Discrete Mathematics Graz University of Technology Graz Austria

Abstract

AbstractIn this note, we consider the width of a supercritical random graph according to some commonly studied width measures. We give short, direct proofs of results of Lee, Lee and Oum, and of Perarnau and Serra, on the rank‐ and tree‐width of the random graph when for constant. Our proofs avoid the use of black box results on the expansion properties of the giant component in this regime, and so as a further benefit we obtain explicit bounds on the dependence of these results on . Finally, we also consider the width of the random graph in the weakly supercritical regime, where and . In this regime, we determine, up to a constant multiplicative factor, the rank‐ and tree‐width of as a function of and .

Funder

Austrian Science Fund

Publisher

Wiley

Reference35 articles.

1. The mixing time of the giant component of a random graph

2. A tourist guide through treewidth;Bodlaender H. L.;Acta Cybern,1993

3. The Isoperimetric Number of Random Regular Graphs

4. Random Graphs

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3