Adulteration detection of edible oil by one‐class classification and outlier detection

Author:

Dou Xinjing1,Tu Fengqin2,Yu Li1,Yang Yong2,Ma Fei1ORCID,Wang Xuefang1,Wang Du1,Zhang Liangxiao134ORCID,Jiang Xiaoming2,Li Peiwu135

Affiliation:

1. Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs Laboratory of Risk Assessment for Oilseed Products (Wuhan), Ministry of Agriculture and Rural Affairs Quality Inspection and Test Center for Oilseed Products, Ministry of Agriculture and Rural Affairs Oil Crops Research Institute, Chinese Academy of Agricultural Sciences Wuhan China

2. Wuhan Institute for Food and Cosmetic Control Wuhan China

3. Hubei Hongshan Laboratory Wuhan China

4. College of Food Science and Engineering Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety Nanjing China

5. Xianghu Laboratory Hangzhou China

Abstract

AbstractEdible oil adulteration is a mostly practiced phenomenon. However, the traditional discriminant methods fail to detect oil adulteration involving more than one adulterant. Recently, one‐class classifiers were built for food or oil authentication. Unfortunately, as it is hard to determine the application domain of the one‐class classifier, high prediction error was obtained for real samples in market surveillance. In this study, a new method was developed based on one‐class classification and outlier detection for edible oil adulteration detection in market surveillance. The model population was constructed using Monte Carlo sampling of unidentified inspected samples to select the plateau region exhibiting the highest accumulated absolute centered residual (ACR) values. Subsequently, the number of models in the plateau region was validated by the theoretical ones calculated by the classical probability model. The models in the plateau region with the highest cumulative accumulated ACR values were used to identify adulterated oils. Furthermore, the cross‐validation was conducted by comparing identification results from two different Monte Carlo sampling ratios to ensure the accuracy of our method. Both single adulteration and multiple adulteration of peanut oils were prepared to validate our method. Moreover, this method was used to detect adulteration of sesame oils, which have already been identified by the markers in our previous study. The validation results of three datasets indicated that this method could effectively identify adulterated samples and therefore provide a novel solution for inspecting potential adulteration in practice.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3