Affiliation:
1. COPPE, Department of Mechanical Engineering Universidade Federal do Rio de Janeiro Rio de Janeiro Brazil
Abstract
AbstractThe long lasting demand for better turbulence models and the still prohibitively computational cost of high‐fidelity fluid dynamics simulations, like direct numerical simulations and large eddy simulations, have led to a rising interest in coupling available high‐fidelity datasets and popular, yet limited, Reynolds averaged Navier–Stokes simulations through machine learning (ML) techniques. Many of the recent advances used the Reynolds stress tensor or, less frequently, the Reynolds force vector as the target for these corrections. In the present work, we considered an unexplored strategy, namely to use the modeled terms of the Reynolds stress transport equation as the target for the ML predictions, employing a neural network approach. After that, we solve the coupled set of governing equations to obtain the mean velocity field. We apply this strategy to solve the flow through a square duct. The obtained results consistently recover the secondary flow, which is not present in the baseline simulations that used the model. The results were compared with other approaches of the literature, showing a path that can be useful in the seek of more universal models in turbulence.
Funder
Conselho Nacional de Desenvolvimento Científico e Tecnológico
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior
Fundação Carlos Chagas Filho de Amparo à Pesquisa do Estado do Rio de Janeiro
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献