Transcriptional evidence for transient regulation of muscle regeneration by brown adipose transplant in the rotator cuff

Author:

Gui Chang1,Meyer Gretchen123ORCID

Affiliation:

1. Department of Biomedical Engineering Washington University in St. Louis St. Louis Missouri USA

2. Department of Neurology and Orthopaedic Surgery Washington University in St. Louis St. Louis Missouri USA

3. Program in Physical Therapy Washington University in St. Louis St. Louis Missouri USA

Abstract

AbstractChronic rotator cuff (RC) injuries can lead to a degenerative microenvironment that favors chronic inflammation, fibrosis, and fatty infiltration. Recovery of muscle structure and function will ultimately require a complex network of muscle resident cells, including satellite cells, fibro‐adipogenic progenitors (FAPs), and immune cells. Recent work suggests that signaling from adipose tissue and progenitors could modulate regeneration and recovery of function, particularly promyogenic signaling from brown or beige adipose (BAT). In this study, we sought to identify cellular targets of BAT signaling during muscle regeneration using a RC BAT transplantation mouse model. Cardiotoxin injured supraspinatus muscle had improved mass at 7 days postsurgery (dps) when transplanted with exogeneous BAT. Transcriptional analysis revealed transplanted BAT modulates FAP signaling early in regeneration likely via crosstalk with immune cells. However, this conferred no long‐term benefit as muscle mass and function were not improved at 28 dps. To eliminate the confounding effects of endogenous BAT, we transplanted BAT in the “BAT‐free” uncoupling protein‐1 diphtheria toxin fragment A (UCP1‐DTA) mouse and here found improved muscle contractile function, but not mass at 28 dps. Interestingly, the transplanted BAT increased fatty infiltration in all experimental groups, implying modulation of FAP adipogenesis during regeneration. Thus, we conclude that transplanted BAT modulates FAP signaling early in regeneration, but does not grant long‐term benefits.

Funder

National Institute of Arthritis and Musculoskeletal and Skin Diseases

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3