Both Landsat‐ and LiDAR‐derived measures predict forest bee response to large‐scale wildfire

Author:

Galbraith Sara M.1,Valente Jonathon J.2,Dunn Christopher J.2,Rivers James W.2ORCID

Affiliation:

1. Department of Forest Ecosystems and Society Oregon State University Corvallis Oregon USA

2. Department of Forest Engineering, Resources, and Management Oregon State University Corvallis Oregon USA

Abstract

AbstractLarge‐scale disturbances such as wildfire can have profound impacts on the composition, structure, and functioning of ecosystems. Bees are critical pollinators in natural settings and often respond positively to wildfires, particularly in forests where wildfire leads to more open conditions and increased floral resources. The use of Light Detection and Ranging (LiDAR) provides opportunities for quantifying habitat features across large spatial scales and is increasingly available to scientists and land managers for post‐fire habitat assessment. We evaluated the extent to which LiDAR‐derived forest structure measurements can predict forest bee communities after a large, mixed‐severity fire. We hypothesized that LiDAR measurements linked to post‐fire forest structure would improve our ability to predict bee abundance and species richness when compared to satellite‐based maps of burn severity. To test this hypothesis, we sampled wild bee communities within the Douglas Fire Complex in southwestern Oregon, USA. We then used LiDAR and Landsat data to quantify forest structure and burn severity, respectively, across bee sampling locations. We found that the LiDAR forest structure model was the best predictor of abundance, whereas the Landsat burn severity model had better predictive ability for species richness. Furthermore, the Landsat burn severity model was better at predicting the presence and species richness of bumble bees (Bombus spp.), an ecologically distinct and economically important group within the Pacific Northwest. We posit that the divergent responses of the two modeling approaches are due to distinct responses by bee taxa to variation in forest structure as mediated by wildfire, with bumble bees in particular depending on closed‐canopy forest for some portions of their life cycle. Our study demonstrates that LiDAR data can provide information regarding the drivers of bee abundance in post‐wildfire conifer forest, and that both remote sensing approaches are useful for predicting components of wild bee diversity after large‐scale wildfire.

Funder

National Institute of Food and Agriculture

U.S. Bureau of Land Management

Publisher

Wiley

Subject

Nature and Landscape Conservation,Computers in Earth Sciences,Ecology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3