Design, optimization, manufacture, and tests of CFRP hydraulic cylinder tube without metal liner: A bionic thorn‐tooth connection

Author:

Li Yao12,Shang Yaoxing134,Wan Xiaofei245,Yu Tian356ORCID,Zhao Xi2,Jiao Zongxia1256

Affiliation:

1. School of Automation Science and Electrical Engineering Beihang University Beijing China

2. Ningbo Institute of Technology Beihang University Ningbo China

3. Research Institute for Frontier Science Beihang University Beijing China

4. Science and Technology on Aircraft Control Laboratory Beihang University Beijing China

5. Key Laboratory of Advanced Aircraft Systems (Beihang University) MIIT Beijing China

6. Tianmushan Laboratory, Xixi Octagon City Hangzhou China

Abstract

AbstractHydraulic cylinders are widely used in rudder surface control, landing gear retraction of aircraft. The aircraft could benefit a lot on weight reduction, by the application of the carbon fiber reinforced polymer (CFPR) on the hydraulic cylinder. The design, optimization, manufacture of the CFRP hydraulic cylinder tube without metal liner is systematically studied in this article. In terms of structure design, inspired by natural thorn plants, a bionic thorn‐tooth connection structure is designed to connect CFRP and the metal end. Then the theoretical design method of thorn‐tooth is proposed. It also provides a new solution for the generic technology of CFRP‐to‐metal connection. In terms of CFRP parameters design method, an accurate mechanical model of CFRP hydraulic tube is established, the influence law of CFRP parameters on mechanical properties is explored, and the optimization method of CFRP parameters adapted to new characteristics is proposed. In terms of the manufacturing process, the split manufacturing‐combined molding process with high precision and low cost is developed to fit the characteristics of CFRP hydraulic tube without metal liner. The prototype manufactured by the proposed method has a weight reduction ratio of 62.37% while maintaining performances compared to the original metal hydraulic cylinder tube. This research will bring significant performance gains and considerable economic and environmental benefits to aircrafts.Highlights The systematic study of CFRP hydraulic tube without metal liner is presented for weight reduction. The bionic thorn‐tooth connection and its parameter design method are proposed. The CFRP parameters design method of CFRP hydraulic tube is established. A manufacturing process adapted to CFRP hydraulic tube without metal liner is developed.

Funder

National Natural Science Foundation of China

National Key Research and Development Program of China

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3