Self‐Aligned Photonic Defect Microcavity Lasers with Site‐Controlled Quantum Dots

Author:

Shih Ching‐Wen1,Limame Imad1,Palekar Chirag C.1,Koulas‐Simos Aris1,Kaganskiy Arsenty1,Klenovský Petr23,Reitzenstein Stephan1

Affiliation:

1. Institut für Festkörperphysik Technische Universität Berlin 10623 Berlin Germany

2. Department of Condensed Matter Physics Faculty of Science Masaryk University Kotlářská 267/2 Brno 61137 Czech Republic

3. Czech Metrology Institute Okružní 31 Brno 63800 Czech Republic

Abstract

AbstractSelf‐assembled semiconductor quantum dots face challenges in terms of scalable device integration because of their random growth positions, originating from the Stranski–Krastanov growth mode. Even with existing site‐controlled growth techniques, for example, nanohole or buried stressor concepts, a further lithography and etching step with high spatial alignment requirements is necessary to accurately integrate quantum dots into the nanophotonic devices. Here, the fabrication and characterization of strain‐induced site‐controlled microcavities are reported, where site‐controlled quantum dots are positioned at the antinode of the optical mode field in a self‐aligned manner without the need of any further nano‐processing. It is shown that the cavity properties such as Q‐factor, mode volume, and mode splitting can be tailored by the geometry of the integrated buried stressor, with an opening <4 µm. The experimental results are complemented with theory calculations based on continuum elasticity. Lasing signatures, including super‐linear input‐output response and linewidth narrowing, are observed for a 3.6‐µm self‐aligned cavity with a Q‐factor of 18 000. Furthermore, the quasi‐planar site‐controlled cavities exhibit no detrimental thermal effects. This approach integrates seamlessly with the industrial‐matured manufacturing process and the buried‐stressor technique, paving the way for exceptional scalability and straightforward manufacturing of high‐β microlasers and bright quantum light sources.

Funder

Deutsche Forschungsgemeinschaft

Volkswagen Foundation

Bundesministerium für Bildung und Forschung

FP7 Ideas: European Research Council

Publisher

Wiley

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3