Tunable Mid‐Infrared Detail‐Enhanced Imaging With Micron‐Level Spatial Resolution and Photon‐Number Resolving Sensitivity

Author:

Zeng Xuanke1,Wang Congying1,Wang Hongyu1,Lin Qinggang1,Chen Zhenkuan1,Lu Xiaowei1,Zheng Maijie1,Liang Jinyang2ORCID,Cai Yi1ORCID,Xu Shixiang1ORCID,Li Jingzhen1

Affiliation:

1. Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province Shenzhen Key Lab of Micro–Nano Photonic Information Technology College of Physics and Optoelectronic Engineering Shenzhen University Guangdong 518060 China

2. Laboratory of Applied Computational Imaging, Centre Énergie Matériaux Télécommunications, Institut National de la Recherche Scientifique Université du Québec Varennes Québec J3×1P7 Canada

Abstract

AbstractThe underdevelopment of mid‐infrared (MIR) components and detectors greatly limits the spatial resolution and sensitivity of MIR imaging. To overcome these limitations, MIR detail‐enhanced imaging is enhanced via non‐degenerate optical parametric amplification (OPA) pumped by a femtosecond vortex pulse. This design renders MIR illumination into a visible image by nonlinear wavelength‐conversion, together with a high OPA gain, large spatial bandwidth, and remarkable sensitivity. These experiments show that the design can realize MIR imaging with a spatial resolution of up to 114 line pairs per millimeter and a 2D spatial bandwidth product of up to 62 900, over a spectral region tunable from 2.0 to 3.0 µm. Equally important, this setup simultaneously achieves excellent imaging sensitivity of 25 photons at room temperature. It is thought that this work provides a powerful way to realize effective real‐time MIR imaging with an excellent spatial resolution even in very weak illumination environments, which can benefit many applications from semiconductor material characterization and biomedical imaging to security.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Guangdong Province

Natural Sciences and Engineering Research Council of Canada

Shenzhen Fundamental Research Program

Publisher

Wiley

Subject

Condensed Matter Physics,Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3