Ray Engineering from Chaos to Order in 2D Optical Cavities

Author:

Xu Chenni12ORCID,Wang Li‐Gang1,Sebbah Patrick2

Affiliation:

1. Department of Physics Zhejiang University Hangzhou 310027 China

2. Department of Physics The Jack and Pearl Resnick Institute for Advanced Technology, Bar‐Ilan University Ramat‐Gan 5290002 Israel

Abstract

AbstractChaos, namely exponential sensitivity to initial conditions, is generally considered a nuisance, inasmuch as it prevents long‐term predictions in physical systems. Here, an easily accessible approach to undo deterministic chaos and tailor ray trajectories in arbitrary 2D optical billiards by introducing spatially varying refractive index therein is presented. A new refractive index landscape is obtained by a conformal mapping, which makes the trajectories of the chaotic billiard fully predictable and the billiard fully integrable. Moreover, trajectory rectification can be pushed a step further by relating chaotic billiards with non‐Euclidean geometries. Two examples are illustrated by projecting billiards built on a sphere as well as the deformed spacetime outside a Schwarzschild black hole, which respectively lead to all periodic orbits and spiraling trajectories remaining away from the boundaries of the transformed 2D billiards/cavities. An implementation of this method is proposed, which enables real‐time control of chaos and can further contribute to a wealth of potential applications in the domain of optical microcavities.

Funder

Centre National de la Recherche Scientifique

Natural Science Foundation of Zhejiang Province

National Natural Science Foundation of China

Key Technologies Research and Development Program

Israel Science Foundation

United States - Israel Binational Science Foundation

Publisher

Wiley

Subject

Condensed Matter Physics,Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3