Affiliation:
1. Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications Jinan University Guangzhou 510632 China
2. Key Laboratory of Optoelectronic Information and Sensing Technologies of Guangdong Higher Education Institutes Jinan University Guangzhou 510632 China
3. State Key Laboratory of Infrared Science and Technology, Shanghai Institute of Technical Physics Chinese Academy of Sciences Shanghai 200083 China
Abstract
AbstractTwo‐dimensional (2D) materials are widely used in numerous optoelectronic devices due to their ultra‐thin dimensions and versatile surfaces. However, less attention is paid to distinguishing the light‐matter interactions along the vertical and horizontal paths within the same 2D lattice, as well as comparatively investigating the optoelectronic behaviors between the sensitive top and bottom surfaces. Here, a dual‐crossbar configured architecture is designed and constructed based on Bi2O2Se semiconductor, featuring highly compact three‐in‐one assembly, namely bottom surface horizontal (BSH), middle sandwich vertical (MSV) and top surface horizontal (TSH) devices. The MSV with nanoscale channel possesses efficient separation and transportation of the photogenerated electrons and holes, responding faster to the light stimulation and compared favorably to the BSH and TSH devices. The optoelectric behaviors of the BSH device can be regulated by the characteristics of the substrate due to closer contact. Nevertheless, the performance of the TSH device is more sensitive to the environment, such as dopant absorption and heat dispersion, thus enabling the non‐volatile photoresponse and can be employed as an artificial optoelectronic synapse. This work highlights the importance of designing the device architecture based on the intrinsic structural advantages of 2D materials, paving the way toward integrated optoelectronics.
Funder
National Key Research and Development Program of China
Natural Science Foundation of Guangdong Province
Fundamental Research Funds for the Central Universities
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献