Suppressing Side‐Scattering on Laser‐Written Bragg Gratings for Back‐Reflection Engineering in Fibers

Author:

Hu Jiacheng1,Wang Yuying1,Lau Kuen Yao1,Han Xuhu1,Firstov Sergei2,Zhong Lijing3ORCID,Wang Yiping4,Qiu Jianrong13

Affiliation:

1. State Key Laboratory of Modern Optical Instrumentation College of Optical Science and Engineering Zhejiang University Hangzhou 310027 China

2. Prokhorov General Physics Institute of the Russian Academy of Sciences Dianov Fiber Optics Research Center 38 Vavilov St. Moscow 119333 Russia

3. Institute of Light+X Science and Technology College of Information Science and Engineering Ningbo University Ningbo 315211 China

4. Shenzhen Key Laboratory of Photonic Devices and Sensing Systems for Internet of Things College of Physics and Optoelectronic Engineering Shenzhen University Shenzhen 518060 China

Abstract

AbstractLaser direct writing (LDW) is versatile in structuring fibers with micro‐sized functional elements such as fiber Bragg grating (FBG) and backscattering centers by finely manipulating back and side scattering from laser‐induced refractive index modified (RIM) points. However, the side‐scattering is a lesser‐explored property in laser‐structured fibers. In this work, a concise physical model is established to understand the side‐scattering as a combined effect of microstructure and geometry of RIM points. Based on a single‐pulsed LDW method, the parametric decoupling between scattering loss (α) and coupling strength (κ) coefficients of FBGs is reported, whose cross‐section is customized to have a flattened ellipse with thoroughly positive RIM, enabling controllable reflectivity from −21.33 dB to −0.0018 dB while maintaining narrow bandwidth and low loss. Exemplarily, a designed FBG realizes ultra‐low loss of 0.008 dB with a resonance attenuation of 10.81 dB, exhibiting a record‐breaking κ/α of 2083. Using this FBG as the high‐reflective mirror of a home‐made bismuth‐doped fiber laser, narrow‐band lasing with a high optical signal‐to‐noise ratio of ≈43 dB is achieved, demonstrating flexibilities of the proposed approach in customizing both back‐ and side‐scattering in fibers and opening up wide opportunities for combining multifunctional components into optical fibers and realizing all‐fiber networks.

Funder

National Basic Research Program of China

Natural Science Foundation of Zhejiang Province

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3