Optically Tunable Ultrafast Broadband Terahertz Polarimetric Device Using Nonvolatile Phase‐Change Material

Author:

Lai Weien1ORCID,Gou Hanguang1,Wu Huizhen2,Rahimi‐Iman Arash3

Affiliation:

1. National Engineering Laboratory of Special Display Technology National Key Laboratory of Advanced Display Technology Anhui Province Key Laboratory of Measuring Theory and Precision Instrument School of Instrument Science and Opto‐electronics Engineering Academy of Opto‐Electronic Technology Hefei University of Technology Hefei 230009 P. R. China

2. Department of Physics and Zhejiang Province Key Laboratory of Quantum Technology and Devices State Key Laboratory of Silicon Materials Zhejiang University Hangzhou 310027 P. R. China

3. I. Physikalisches Institut and Center for Materials Research Justus‐Liebig‐Universität Gießen 35392 Gießen Germany

Abstract

AbstractActively tunable ultrafast broadband terahertz (THz) polarimetry using a reconfigurable phase‐change material holds great potentials and prospects for the achievement of next‐generation versatile integrated THz components and systems in a variety of THz applications. Here, an optically tunable ultrafast broadband THz polarimetric device (THz‐PoD) composed of a phase‐change material Ge2Sb2Te5 (GST) and a thin mica substrate is demonstrated. This proposed novel THz‐PoD is verified for a frequency range of 0.1–2.5 THz, exhibiting broadband and ultrafast determination of polarization states for linearly polarized THz waves at polarization angles from −90° to 90°. It is shown that optical excitation with ns pulses allows easy and efficient control of the polarimetric properties of such THz‐PoD. The essential role of the GST film in switching the phase transition between the amorphous and crystalline phases is emphasized by the theoretical investigation of the optically tunable ultrafast polarimetric mechanism of the device. This phase transition allows optically changing the THz‐PoD's properties by ns‐pulsed laser in a controlled way to achieve THz polarimetry for linearly polarized THz waves. The combined advantages of this strategy can open up a new and promising way for realizing versatile reconfigurable and integrated THz devices, which may further promote the development of novel THz systems and applications.

Funder

National Natural Science Foundation of China

Chinesisch-Deutsche Zentrum für Wissenschaftsförderung

Deutsche Forschungsgemeinschaft

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3