Large‐Range Beam Steering through Dynamic Manipulation of Topological Charges

Author:

Zhang Kong12,Zhang Guanjie1,Chen Xinghong1,Sang Yungang3,Mao Yifei12ORCID

Affiliation:

1. School of Sensing Science and Engineering School of Electronic Information and Electrical Engineering Shanghai Jiao Tong University Shanghai 200240 China

2. SJTU‐Pinghu Institute of Intelligent Optoelectronics Pinghu 314200 China

3. Institute of Microelectronics Chinese Academy of Sciences Beijing 100029 China

Abstract

AbstractDynamic tuning of light properties by external stimuli is at the core of various applications such as electro‐optical modulators, beam steering, and spatial light modulators. The conventional mechanism involves fine‐tuning the eigenmode of an optical system through adjusting the effective refractive index. However, the weak nonlinearity results in low modulation efficiency, leading to devices with poor performance and large size. Polarization topological charge is a significant concept that has facilitated the development of innovative optical devices like low‐threshold lasers and vortex generators. But the devices reported so far are static in nature. Here, a method for dynamically controlling light by actively manipulating the evolution of topological charges in momentum space is first presented. By switching between integer and half‐integer states of topological charges, the device's radiation properties undergo a significant transformation. The beam direction can be tuned up to 160°, which, to the best of the authors' knowledge, is the largest tuning angle among similar beam steering devices. Furthermore, the device demonstrates high radiation efficiency while maintaining a compact device size. This light controlling method can be applied in various fields, including optical communication, tunable lasers, and light detection and ranging.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3