Affiliation:
1. Shanghai Institute of Optics and Fine Mechanics Chinese Academy of Sciences, and Shanghai Key Laboratory of Solid‐State Laser and Application Shanghai 201800 China
2. Center of Materials Science and Optoelectronics Engineering University of Chinese Academy of Sciences Beijing 100049 China
3. Hangzhou Institute for Advanced Study University of Chinese Academy of Sciences Hangzhou 310024 China
Abstract
AbstractThe field of optical‐frequency‐combs (OFCs) has seen significant progress in recent years due to the advance of mode‐locked fiber lasers with low‐noise performance and long‐term reliability. With the emergence of applications, OFCs with repetition rates close to GHz have become highly sought after. However, generating GHz fiber‐based combs with low noise remains a significant challenge. In this study, a GHz figure‐9 Er‐doped OFC based on a nested fiber ring resonator is presented. By matching the free‐spectral range (FSR) of external and internal optical resonators, an 11‐fold increase in repetition rate from 82 MHz to 907 MHz is achieved. Notably, it is demonstrated that a single pulse operation with long‐term FSR matching can be achieved without any active feedback control. The comb offset frequency is detected using f‐to‐2f technique to ensure high coherence between pulses, which is distinguished from harmonic mode‐locking. The results show that the nested resonators are capable of generating GHz ultrafast OFC pulses with low phase noise via a more flexible cavity design than conventional short‐cavity solutions. This work provides a valuable contribution to the field of ultrafast laser and optical metrology, which demonstrates the potential of nested‐resonators for generating low noise OFCs with boosted repetition rate.
Funder
Youth Innovation Promotion Association of the Chinese Academy of Sciences
National Natural Science Foundation of China
Natural Science Foundation of Shanghai Municipality
Subject
Condensed Matter Physics,Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献