Optimizing Energy Transfer: Suppressing Cs2ZnCl4 Self‐Trapped States and Boosting Ce3+ Ion Luminescence Efficiency

Author:

Wen Ziying1,Bai Yunfei2,Meng Qichao2,Zhao Hongyuan2,Wang Qiujie2,Sun Haibo2,Huang Li3,Huang Dan4,Yu William W.56,Zhu Jun1,Liu Feng2ORCID

Affiliation:

1. School of Chemistry and Chemical Engineering Academy of Opto‐Electric Technology Hefei University of Technology Hefei 230009 China

2. Institute of Frontier Chemistry School of Chemistry and Chemical Engineering Shandong University Qingdao 266237 China

3. Laoshan Laboratory Qingdao 266071 China

4. State Key Laboratory of Featured Metal Materials and Life‐cycle Safety for Composite Structures School of Physical Science and Technology Guangxi University Nanning 530004 China

5. School of Chemistry and Chemical Engineering Key Laboratory of Special Functional Aggregated Materials Ministry of Education Shandong Key Laboratory of Advanced Organosilicon Materials and Technologies Shandong University Jinan 250100 China

6. Shandong Provincial Key Laboratory for Science of Material Creation and Energy Conversion Science Center for Material Creation and Energy Conversion Shandong University Qingdao 266237 China

Abstract

AbstractIncorporating trivalent cerium ions (Ce3+) into colloidal semiconductor nanomaterials, such as zinc sulfide (ZnS) and cesium lead chloride (CsPbCl3), provides a feasible approach for achieving significant Ce3+ photoluminescence (PL). However, due to inefficient intersystem crossing and intense non‐radiative decay of host phosphors, most Ce3+‐doped luminophores exhibit low luminescence efficiency, with photoluminescence quantum yield (PLQY) typically <50%. Additionally, these doping systems often encounter challenges with spectral impurity due to unwanted fluorescence emanating from the host material. In this study, an optimal cesium zinc chloride (Cs2ZnCl4) nanorod (NR) host matrix is meticulously engineered, that significantly enhances the luminescence of Ce3+ ions, reaching a PLQY near unity. Furthermore, these NRs display an exceptionally pure Ce3+ emission spectrum, free from any extraneous emission from the matrix itself. The results from transient absorption and emission experiments reveal a ≈100% energy transfer efficiency from Cs2ZnCl4 to Ce3+, coupled with a significant reduction in radiative self‐trapped states within the host.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Shandong Province

Natural Science Foundation of Anhui Province

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3